If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.2=4.9t^2
We move all terms to the left:
1.2-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+1.2=0
a = -4.9; b = 0; c = +1.2;
Δ = b2-4ac
Δ = 02-4·(-4.9)·1.2
Δ = 23.52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{23.52}}{2*-4.9}=\frac{0-\sqrt{23.52}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{23.52}}{2*-4.9}=\frac{0+\sqrt{23.52}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 0.3(x-2)=0.4(x+2) | | 0.2x-1.6=0.4(x-3) | | 7m-13=4m+5 | | 1/2x+3=3/2+2x | | 0.5x+1=0.3(x-4) | | (2x+5)+(4x-7)=180 | | 8=6(8n+6)-4(2n+7) | | 6y-3.3=6.3 | | 24x-9+7x-15=180 | | 6.3=6y-3.3 | | 125*x=90 | | 5x+3(x-6)=4(x+2)-3 | | 2(x+1)/3=3x+4 | | -3x-7=4x+21 | | (X-10)(4x+20)=180 | | 50+(4x+45)=180 | | X-10(4x+20)=180 | | x+(2x/25)=11407 | | x+(2x/25)=14762 | | 3x2-4x=-27 | | -8x-3=-7x-6 | | 10=-2(4x-5) | | 4(3x+7)=-13+29 | | 1/4(x+500)=250 | | 5x-8-3X+4=0 | | 1x+5x=216 | | 7-2(2x-1=-5 | | 20+0.10t=55+0.05t | | 6-(2z-5)=4-3z | | 7x^-9=5x | | -11(x+2)+5(3X-5)=3(x-4)+8 | | 9x+2-2x=3+6x+1 |